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1. Executive Summary
This guide provides comprehensive patterns and strategies for migrating Informatica PowerCenter and Intelligent Cloud Services (IICS) workflows to Databricks. It covers mapping concepts, transformation conversions, orchestration patterns, and validation strategies.
________________________________________________________________________________
2. Conceptual Mapping
2.1 Component Mapping
	Informatica Concept
	Databricks Equivalent

	Repository/Folder
	Unity Catalog / Workspace

	Mapping
	Notebook / DLT Pipeline

	Session
	Databricks Job Task

	Workflow
	Databricks Workflow/Job

	Source Qualifier
	spark.read / Auto Loader

	Target
	spark.write / Delta Table

	Lookup
	DataFrame join / broadcast

	Filter
	DataFrame.filter()

	Expression
	withColumn() / Spark SQL

	Aggregator
	groupBy().agg()

	Joiner
	DataFrame.join()

	Sorter
	DataFrame.orderBy()

	Normalizer
	explode() / stack()

	Router
	filter() to multiple outputs

	Sequence Generator
	monotonically_increasing_id()

	Stored Procedure
	spark.sql() / JDBC

	Mapping Parameter
	Notebook widgets / Job parameters



2.2 Architecture Comparison
┌─────────────────────────────────────────────────────────────────────────────┐
│                    INFORMATICA vs DATABRICKS ARCHITECTURE                    │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│  INFORMATICA                          DATABRICKS                            │
│  ┌─────────────────────────┐          ┌─────────────────────────┐          │
│  │     PowerCenter         │          │     Databricks          │          │
│  │  ┌─────────────────┐    │          │  ┌─────────────────┐    │          │
│  │  │   Repository    │    │          │  │  Unity Catalog  │    │          │
│  │  │   (Metadata)    │    │  ──────▶ │  │   (Governance)  │    │          │
│  │  └─────────────────┘    │          │  └─────────────────┘    │          │
│  │  ┌─────────────────┐    │          │  ┌─────────────────┐    │          │
│  │  │   Workflows     │    │          │  │    Workflows    │    │          │
│  │  │   (Orchestrate) │    │  ──────▶ │  │     (Jobs)      │    │          │
│  │  └─────────────────┘    │          │  └─────────────────┘    │          │
│  │  ┌─────────────────┐    │          │  ┌─────────────────┐    │          │
│  │  │    Mappings     │    │          │  │   Notebooks /   │    │          │
│  │  │  (Transform)    │    │  ──────▶ │  │   DLT Pipelines │    │          │
│  │  └─────────────────┘    │          │  └─────────────────┘    │          │
│  │  ┌─────────────────┐    │          │  ┌─────────────────┐    │          │
│  │  │   Integration   │    │          │  │     Spark       │    │          │
│  │  │    Service      │    │  ──────▶ │  │    Clusters     │    │          │
│  │  └─────────────────┘    │          │  └─────────────────┘    │          │
│  └─────────────────────────┘          └─────────────────────────┘          │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘

________________________________________________________________________________
3. Source and Target Migration
3.1 Source Qualifier
Informatica Source Qualifier:
- SQL Override
- Filter
- Sorted Ports
- Join condition

# PySpark equivalent
from pyspark.sql import functions as F

# Basic source read with filter (equivalent to Source Qualifier)
source_df = (spark.read
    .format("jdbc")
    .option("url", "jdbc:oracle:thin:@//host:1521/db")
    .option("dbtable", "(SELECT * FROM orders WHERE status = 'ACTIVE') alias")
    .option("user", dbutils.secrets.get("scope", "db_user"))
    .option("password", dbutils.secrets.get("scope", "db_password"))
    .load()
)

# Or using Spark SQL pushdown
source_df = spark.sql("""
    SELECT
        order_id,
        customer_id,
        order_date,
        amount
    FROM jdbc_table
    WHERE status = 'ACTIVE'
    ORDER BY order_date
""")

# Auto Loader for file-based sources
source_df = (spark.readStream
    .format("cloudFiles")
    .option("cloudFiles.format", "csv")
    .option("cloudFiles.schemaLocation", "/checkpoints/schema")
    .option("header", "true")
    .load("/landing/orders/")
)

3.2 Target Configuration
Informatica Target:
- Insert/Update/Delete
- Pre/Post SQL
- Commit interval
- Truncate target

# PySpark equivalent - Insert
(source_df.write
    .format("delta")
    .mode("append")
    .saveAsTable("silver.orders")
)

# PySpark equivalent - Upsert (Update/Insert)
from delta.tables import DeltaTable

target_table = DeltaTable.forName(spark, "silver.orders")

(target_table.alias("target")
    .merge(source_df.alias("source"), "target.order_id = source.order_id")
    .whenMatchedUpdateAll()
    .whenNotMatchedInsertAll()
    .execute()
)

# Pre/Post SQL equivalent
spark.sql("DELETE FROM silver.orders WHERE order_date < '2024-01-01'")  # Pre-SQL

# Write data
source_df.write.format("delta").mode("append").saveAsTable("silver.orders")

spark.sql("OPTIMIZE silver.orders")  # Post-SQL
spark.sql("ANALYZE TABLE silver.orders COMPUTE STATISTICS")

# Truncate and reload
(source_df.write
    .format("delta")
    .mode("overwrite")
    .option("overwriteSchema", "true")
    .saveAsTable("silver.orders")
)

________________________________________________________________________________
4. Transformation Migration
4.1 Expression Transformation
Informatica Expression:
- Port: FULL_NAME = CONCAT(FIRST_NAME, ' ', LAST_NAME)
- Port: REVENUE_TIER = IIF(REVENUE > 10000, 'HIGH', IIF(REVENUE > 1000, 'MEDIUM', 'LOW'))
- Port: ORDER_YEAR = TO_CHAR(ORDER_DATE, 'YYYY')

# PySpark equivalent
transformed_df = (source_df
    # String concatenation
    .withColumn("full_name", F.concat_ws(" ", "first_name", "last_name"))

    # Conditional logic (IIF equivalent)
    .withColumn("revenue_tier",
        F.when(F.col("revenue") > 10000, "HIGH")
        .when(F.col("revenue") > 1000, "MEDIUM")
        .otherwise("LOW")
    )

    # Date formatting
    .withColumn("order_year", F.date_format("order_date", "yyyy"))

    # Informatica functions mapping
    .withColumn("upper_name", F.upper("name"))              # UPPER
    .withColumn("lower_name", F.lower("name"))              # LOWER
    .withColumn("trimmed", F.trim("name"))                  # LTRIM/RTRIM
    .withColumn("substr_name", F.substring("name", 1, 5))   # SUBSTR
    .withColumn("name_length", F.length("name"))            # LENGTH
    .withColumn("null_check", F.coalesce("value", F.lit(0)))  # NVL/ISNULL
    .withColumn("decode_val",                               # DECODE
        F.when(F.col("code") == "A", "Active")
        .when(F.col("code") == "I", "Inactive")
        .otherwise("Unknown")
    )
)

4.2 Filter Transformation
Informatica Filter:
- Filter Condition: STATUS = 'ACTIVE' AND AMOUNT > 0

# PySpark equivalent
filtered_df = (source_df
    .filter(
        (F.col("status") == "ACTIVE") &
        (F.col("amount") > 0)
    )
)

# Alternative using SQL expression
filtered_df = source_df.filter("status = 'ACTIVE' AND amount > 0")

# Complex filter with null handling
filtered_df = (source_df
    .filter(
        (F.col("status") == "ACTIVE") &
        (F.col("amount") > 0) &
        (F.col("email").isNotNull()) &
        (~F.col("name").contains("TEST"))
    )
)

4.3 Aggregator Transformation
Informatica Aggregator:
- Group By: CUSTOMER_ID, PRODUCT_CATEGORY
- Ports: SUM(AMOUNT), COUNT(*), AVG(QUANTITY)

# PySpark equivalent
aggregated_df = (source_df
    .groupBy("customer_id", "product_category")
    .agg(
        F.sum("amount").alias("total_amount"),
        F.count("*").alias("order_count"),
        F.avg("quantity").alias("avg_quantity"),
        F.min("order_date").alias("first_order"),
        F.max("order_date").alias("last_order"),
        F.countDistinct("product_id").alias("unique_products"),
        F.collect_list("product_id").alias("all_products")
    )
)

# Sorted Aggregator equivalent (with ordering)
window_spec = Window.partitionBy("customer_id").orderBy("order_date")

sorted_agg_df = (source_df
    .withColumn("row_num", F.row_number().over(window_spec))
    .groupBy("customer_id")
    .agg(
        F.sum("amount").alias("total_amount"),
        F.first("product_id").alias("first_product"),
        F.last("product_id").alias("last_product")
    )
)

4.4 Joiner Transformation
Informatica Joiner:
- Master: CUSTOMERS (detail)
- Detail: ORDERS
- Join Type: Normal (Inner)
- Join Condition: CUSTOMERS.CUST_ID = ORDERS.CUSTOMER_ID

# PySpark equivalent
# Inner Join (Normal Join in Informatica)
joined_df = orders_df.join(
    customers_df,
    orders_df.customer_id == customers_df.cust_id,
    "inner"
)

# Left Outer Join (Master Outer)
joined_df = orders_df.join(
    customers_df,
    orders_df.customer_id == customers_df.cust_id,
    "left"
)

# Right Outer Join (Detail Outer)
joined_df = orders_df.join(
    customers_df,
    orders_df.customer_id == customers_df.cust_id,
    "right"
)

# Full Outer Join (Full Outer)
joined_df = orders_df.join(
    customers_df,
    orders_df.customer_id == customers_df.cust_id,
    "outer"
)

# Multiple join conditions
joined_df = orders_df.join(
    customers_df,
    (orders_df.customer_id == customers_df.cust_id) &
    (orders_df.region == customers_df.region),
    "left"
)

# Handle duplicate column names
joined_df = orders_df.alias("o").join(
    customers_df.alias("c"),
    F.col("o.customer_id") == F.col("c.cust_id"),
    "left"
).select(
    "o.*",
    F.col("c.customer_name"),
    F.col("c.email")
)

4.5 Lookup Transformation
Informatica Lookup:
- Lookup Table: DIM_PRODUCT
- Lookup Condition: PRODUCT_ID = IN_PRODUCT_ID
- Return Ports: PRODUCT_NAME, CATEGORY
- Lookup Policy: Return first value

# PySpark equivalent - Broadcast join for small lookup tables
lookup_df = spark.table("dim_product").select(
    "product_id",
    "product_name",
    "category"
)

result_df = source_df.join(
    F.broadcast(lookup_df),
    "product_id",
    "left"
)

# Multiple lookups
dim_customer = spark.table("dim_customer")
dim_product = spark.table("dim_product")
dim_date = spark.table("dim_date")

result_df = (source_df
    .join(F.broadcast(dim_customer), "customer_id", "left")
    .join(F.broadcast(dim_product), "product_id", "left")
    .join(F.broadcast(dim_date),
          F.col("order_date") == F.col("date_key"), "left")
)

# Cached lookup (for connected lookup behavior)
lookup_df.cache().count()  # Force caching

result_df = source_df.join(lookup_df, "product_id", "left")

# Dynamic lookup with default value
result_df = (source_df
    .join(lookup_df, "product_id", "left")
    .withColumn("product_name",
        F.coalesce(F.col("product_name"), F.lit("Unknown"))
    )
)

4.6 Router Transformation
Informatica Router:
- Group 1: HIGH_VALUE where AMOUNT > 10000
- Group 2: MEDIUM_VALUE where AMOUNT BETWEEN 1000 AND 10000
- Group 3: LOW_VALUE where AMOUNT < 1000
- Default: UNCLASSIFIED

# PySpark equivalent - Route to different DataFrames
high_value = source_df.filter(F.col("amount") > 10000)
medium_value = source_df.filter(
    (F.col("amount") >= 1000) & (F.col("amount") <= 10000)
)
low_value = source_df.filter(F.col("amount") < 1000)

# Write to different targets
high_value.write.saveAsTable("staging.high_value_orders")
medium_value.write.saveAsTable("staging.medium_value_orders")
low_value.write.saveAsTable("staging.low_value_orders")

# Alternative: Add routing flag and write once
routed_df = (source_df
    .withColumn("value_tier",
        F.when(F.col("amount") > 10000, "HIGH")
        .when(F.col("amount") >= 1000, "MEDIUM")
        .otherwise("LOW")
    )
)

routed_df.write.partitionBy("value_tier").saveAsTable("staging.orders_by_tier")

4.7 Normalizer Transformation
Informatica Normalizer:
- Input: CUST_ID, Q1_SALES, Q2_SALES, Q3_SALES, Q4_SALES
- Output: CUST_ID, QUARTER, SALES (one row per quarter)

# PySpark equivalent - Using stack()
normalized_df = (source_df
    .select(
        "cust_id",
        F.expr("""
            stack(4,
                'Q1', q1_sales,
                'Q2', q2_sales,
                'Q3', q3_sales,
                'Q4', q4_sales
            ) as (quarter, sales)
        """)
    )
)

# Alternative: Using melt pattern
quarters = ["q1_sales", "q2_sales", "q3_sales", "q4_sales"]

normalized_df = (source_df
    .select(
        "cust_id",
        F.explode(F.array([
            F.struct(F.lit(q.replace("_sales", "").upper()).alias("quarter"),
                    F.col(q).alias("sales"))
            for q in quarters
        ])).alias("data")
    )
    .select("cust_id", "data.quarter", "data.sales")
)

4.8 Sequence Generator
Informatica Sequence Generator:
- Start Value: 1
- Increment: 1
- Current Value: NEXTVAL

# PySpark equivalent - monotonically_increasing_id (not sequential)
df_with_id = source_df.withColumn(
    "row_id",
    F.monotonically_increasing_id()
)

# For true sequential IDs, use row_number
window_spec = Window.orderBy(F.monotonically_increasing_id())
df_with_seq = source_df.withColumn(
    "sequence_id",
    F.row_number().over(window_spec)
)

# With specific start value
start_value = 1000
df_with_seq = source_df.withColumn(
    "sequence_id",
    F.row_number().over(window_spec) + start_value - 1
)

# Using IDENTITY column in Delta
spark.sql("""
    CREATE TABLE target_table (
        surrogate_key BIGINT GENERATED ALWAYS AS IDENTITY,
        business_key STRING,
        other_columns STRING
    )
""")

________________________________________________________________________________
5. Workflow Migration
5.1 Workflow to Databricks Job
Informatica Workflow:
- Start Task
- Session Task 1: Load_Customers
- Decision Task: Check_Count
- Session Task 2: Load_Orders (if count > 0)
- Email Task: Send_Notification
- End Task

# Databricks Job definition (YAML/JSON)
job_config = {
    "name": "Customer_Order_Pipeline",
    "tasks": [
        {
            "task_key": "load_customers",
            "notebook_task": {
                "notebook_path": "/Repos/prod/pipelines/load_customers"
            },
            "job_cluster_key": "shared_cluster"
        },
        {
            "task_key": "check_count",
            "depends_on": [{"task_key": "load_customers"}],
            "condition_task": {
                "op": "GREATER_THAN",
                "left": "{{tasks.load_customers.values.row_count}}",
                "right": "0"
            }
        },
        {
            "task_key": "load_orders",
            "depends_on": [{"task_key": "check_count", "outcome": "true"}],
            "notebook_task": {
                "notebook_path": "/Repos/prod/pipelines/load_orders"
            }
        },
        {
            "task_key": "send_notification",
            "depends_on": [
                {"task_key": "load_customers"},
                {"task_key": "load_orders"}
            ],
            "notebook_task": {
                "notebook_path": "/Repos/prod/utils/send_email"
            }
        }
    ],
    "job_clusters": [
        {
            "job_cluster_key": "shared_cluster",
            "new_cluster": {
                "spark_version": "14.3.x-scala2.12",
                "node_type_id": "i3.xlarge",
                "num_workers": 4
            }
        }
    ],
    "email_notifications": {
        "on_failure": ["team@company.com"]
    }
}

5.2 Session Task Properties
# Informatica Session properties mapped to Databricks

# 1. Source/Target commit intervals
# In PySpark, handled by foreachBatch or trigger intervals
(streaming_df.writeStream
    .trigger(processingTime="1 minute")  # Commit interval
    .option("checkpointLocation", "/checkpoints/orders")
    .toTable("silver.orders")
)

# 2. Error handling (row-level)
def process_with_error_handling(df):
    """Handle errors like Informatica error tables."""
    # Add validation columns
    validated = df.withColumn("_is_valid",
        (F.col("customer_id").isNotNull()) &
        (F.col("amount") > 0)
    )

    # Split into good and bad records
    good_records = validated.filter(F.col("_is_valid"))
    bad_records = validated.filter(~F.col("_is_valid"))

    # Write bad records to error table
    bad_records.write.mode("append").saveAsTable("error.orders_errors")

    return good_records.drop("_is_valid")

# 3. Performance tuning
spark.conf.set("spark.sql.shuffle.partitions", "200")  # DTM buffer size equivalent
spark.conf.set("spark.sql.adaptive.enabled", "true")   # Dynamic optimization

________________________________________________________________________________
6. Mapping Parameters and Variables
6.1 Parameter Migration
Informatica Mapping Parameters:
- $$PROCESS_DATE: System date for processing
- $$SOURCE_SCHEMA: Source schema name
- $$TARGET_SCHEMA: Target schema name

# Databricks - Using widgets (interactive)
dbutils.widgets.text("process_date", "", "Process Date")
dbutils.widgets.text("source_schema", "bronze", "Source Schema")
dbutils.widgets.text("target_schema", "silver", "Target Schema")

process_date = dbutils.widgets.get("process_date") or str(date.today())
source_schema = dbutils.widgets.get("source_schema")
target_schema = dbutils.widgets.get("target_schema")

# Databricks - Using job parameters
# In notebook:
process_date = spark.conf.get("process_date", str(date.today()))
source_schema = spark.conf.get("source_schema", "bronze")

# In job definition:
# parameters: {"process_date": "2025-01-24", "source_schema": "bronze"}

# Use parameters in queries
source_table = f"{source_schema}.orders"
target_table = f"{target_schema}.orders_clean"

df = spark.table(source_table)
df.write.saveAsTable(target_table)

6.2 Workflow Variables
# Informatica workflow variables mapped to task values

# In notebook, set output value:
dbutils.jobs.taskValues.set(key="row_count", value=df.count())
dbutils.jobs.taskValues.set(key="status", value="SUCCESS")

# In downstream notebook, get value:
prev_count = dbutils.jobs.taskValues.get(
    taskKey="load_customers",
    key="row_count",
    default=0
)

# Use in conditional logic
if prev_count > 0:
    # Process orders
    pass

________________________________________________________________________________
7. Error Handling Migration
7.1 Error Handling Patterns
class InformaticaStyleErrorHandler:
    """
    Mimics Informatica error handling behavior.
    """

    def __init__(self, error_table: str, max_errors: int = 1000):
        self.error_table = error_table
        self.max_errors = max_errors
        self.error_count = 0

    def validate_row(self, df: DataFrame, rules: dict) -> tuple:
        """
        Validate rows and separate good from bad.

        Args:
            df: Input DataFrame
            rules: Dictionary of column -> validation expression

        Returns:
            Tuple of (good_records, bad_records)
        """
        # Add validation flags
        for col_name, rule in rules.items():
            df = df.withColumn(f"_valid_{col_name}", F.expr(rule))

        # Determine overall validity
        valid_columns = [f"_valid_{col}" for col in rules.keys()]
        df = df.withColumn("_is_valid",
            F.reduce(lambda a, b: a & b, [F.col(c) for c in valid_columns])
        )

        # Split records
        good_records = df.filter(F.col("_is_valid"))
        bad_records = df.filter(~F.col("_is_valid"))

        # Track error count
        bad_count = bad_records.count()
        self.error_count += bad_count

        # Check threshold
        if self.error_count > self.max_errors:
            raise ValueError(f"Error threshold exceeded: {self.error_count} > {self.max_errors}")

        # Log errors
        if bad_count > 0:
            error_df = (bad_records
                .withColumn("_error_timestamp", F.current_timestamp())
                .withColumn("_error_source", F.lit("validation"))
            )
            error_df.write.mode("append").saveAsTable(self.error_table)

        # Clean up validation columns
        drop_cols = valid_columns + ["_is_valid"]
        good_records = good_records.drop(*drop_cols)
        bad_records = bad_records.drop(*drop_cols)

        return good_records, bad_records

# Usage
handler = InformaticaStyleErrorHandler("error.order_errors", max_errors=500)

rules = {
    "customer_id": "customer_id IS NOT NULL",
    "amount": "amount > 0 AND amount < 1000000",
    "order_date": "order_date <= current_date()"
}

good_df, bad_df = handler.validate_row(source_df, rules)

________________________________________________________________________________
8. Incremental Loading Patterns
8.1 Timestamp-Based CDC
# Informatica: Session with incremental extract
# - Source filter: LAST_UPDATED >= $$LAST_EXTRACT_DATE

def incremental_load(
    source_table: str,
    target_table: str,
    timestamp_column: str,
    checkpoint_table: str
):
    """
    Incremental load using timestamp watermark.
    """
    # Get last checkpoint
    checkpoint = spark.sql(f"""
        SELECT MAX(checkpoint_value) as last_ts
        FROM {checkpoint_table}
        WHERE table_name = '{target_table}'
    """).collect()[0]["last_ts"]

    if checkpoint is None:
        checkpoint = "1900-01-01 00:00:00"

    # Extract changed records
    changed_df = spark.sql(f"""
        SELECT *
        FROM {source_table}
        WHERE {timestamp_column} > '{checkpoint}'
    """)

    record_count = changed_df.count()

    if record_count > 0:
        # Merge into target
        target = DeltaTable.forName(spark, target_table)
        (target.alias("t")
            .merge(changed_df.alias("s"), "t.id = s.id")
            .whenMatchedUpdateAll()
            .whenNotMatchedInsertAll()
            .execute()
        )

        # Update checkpoint
        new_checkpoint = changed_df.agg(F.max(timestamp_column)).collect()[0][0]
        spark.sql(f"""
            INSERT INTO {checkpoint_table}
            VALUES ('{target_table}', '{new_checkpoint}', current_timestamp())
        """)

    return record_count

8.2 Change Data Capture
# Full CDC implementation (similar to Informatica PowerExchange CDC)

def apply_cdc_changes(
    cdc_source_table: str,
    target_table: str,
    key_columns: list
):
    """
    Apply CDC changes from source to target.
    CDC source should have operation column: I (Insert), U (Update), D (Delete)
    """
    cdc_df = spark.table(cdc_source_table)
    target = DeltaTable.forName(spark, target_table)

    # Build merge key condition
    key_condition = " AND ".join([f"t.{k} = s.{k}" for k in key_columns])

    (target.alias("t")
        .merge(cdc_df.alias("s"), key_condition)
        # Handle deletes
        .whenMatchedDelete(condition="s.operation = 'D'")
        # Handle updates
        .whenMatchedUpdateAll(condition="s.operation = 'U'")
        # Handle inserts
        .whenNotMatchedInsertAll(condition="s.operation = 'I'")
        .execute()
    )

________________________________________________________________________________
9. Migration Validation
9.1 Data Reconciliation
def reconcile_informatica_databricks(
    infa_export_path: str,
    databricks_table: str,
    key_columns: list,
    compare_columns: list
) -> dict:
    """
    Compare Informatica export with Databricks output.
    """
    # Load Informatica export
    infa_df = spark.read.parquet(infa_export_path)

    # Load Databricks output
    db_df = spark.table(databricks_table)

    # Row counts
    infa_count = infa_df.count()
    db_count = db_df.count()

    # Find missing records
    infa_only = infa_df.join(db_df, key_columns, "left_anti")
    db_only = db_df.join(infa_df, key_columns, "left_anti")

    # Find value differences
    joined = infa_df.alias("i").join(db_df.alias("d"), key_columns, "inner")

    diff_conditions = []
    for col in compare_columns:
        diff_conditions.append(
            (F.col(f"i.{col}") != F.col(f"d.{col}")) |
            (F.col(f"i.{col}").isNull() != F.col(f"d.{col}").isNull())
        )

    value_diffs = joined.filter(F.reduce(lambda a, b: a | b, diff_conditions))

    return {
        "informatica_count": infa_count,
        "databricks_count": db_count,
        "count_match": infa_count == db_count,
        "infa_only_count": infa_only.count(),
        "db_only_count": db_only.count(),
        "value_diff_count": value_diffs.count(),
        "reconciliation_passed": (
            infa_count == db_count and
            infa_only.count() == 0 and
            db_only.count() == 0 and
            value_diffs.count() == 0
        )
    }

________________________________________________________________________________
10. Migration Checklist
10.1 Pre-Migration
[ ] Document all Informatica mappings and workflows
[ ] Identify source/target connections
[ ] Map transformations to PySpark equivalents
[ ] Identify complex transformations requiring custom code
[ ] Plan Unity Catalog schema structure
10.2 During Migration
[ ] Convert source/target definitions
[ ] Migrate transformations systematically
[ ] Convert workflows to Databricks jobs
[ ] Implement error handling
[ ] Add logging and monitoring
10.3 Post-Migration
[ ] Run data reconciliation tests
[ ] Compare performance metrics
[ ] Document any differences
[ ] Train operations team
[ ] Decommission Informatica jobs
________________________________________________________________________________
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